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Received 27 August 1996, in final form 8 January 1997

Abstract. We study the influence of defects on the sliding friction for one-, two-, and three-
dimensional elastic solids. We show that for 1D and 2D solids, perturbation theory breaks down
at low sliding velocity. For a 1D solid with a low concentration of point defects we present an
exact solution for the sliding friction, valid for arbitrary temperature and strength of the defect
potential. We discuss the role of point defects in the linear (in the external driving force) sliding
friction for Xe monolayers on metal surfaces.

1. Introduction

The influence of defects on the pinning and sliding friction are important in many
technological applications [1]. For instance, the pinning of contact lines controls the
spreading of a liquid on a solid, the pinning of flux lines suppresses dissipation in type-II
superconductors, and the depinning of sliding tectonic plates leads to earthquakes. Defects
will also contribute to the static and kinetic friction forces during the sliding of one body
on another [2].

The role of defects in the pinning and sliding of charge-density waves and of flux line
systems has been studied experimentally and theoretically for many years [3, 4]. Both
of these systems can, for some purposes, be considered as elastic solids interacting with
defects, e.g., grain boundaries, dislocations, or point defects. Charge-density-wave systems
are usually quasi-one- or two-dimensional systems (note: the charge-density-wave states
tend to be more stable in low-dimensional systems as compared with 3D systems), and flux
line systems in thin metal films behave as 2D solids. Thus, the influence of defects on
the sliding of 1D and 2D solids is of considerable practical importance for a wide class of
different systems.

It has recently been observed that adsorbate layers on metal surfaces can slide relative
to the metal surface when the solid substrate performs mechanical vibrations [5]. The
basic quantity deduced from the experimental data is the sliding frictionη̄. For a film one
monolayer thick (or less)̄η determines the friction force,−F0, between the adsorbate layer
and the substrate via

F0 = Nmη̄v (1)

whereN is the number of adsorbates andv the velocity of the adsorbate layer relative to
the metal surface.

Recent experimental and theoretical studies have shown that for a compressed
incommensurate Xe monolayer on Ag(111) the sliding frictionη̄ may be dominated by
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the direct coupling between the sliding layer and the electronic excitations in the substrate
[6, 7]. Assuming that this conclusion is correct, it remains to be understood why the
interaction with surface defects (e.g. steps) has a negligible influence on the sliding friction.

In this paper we study the influence of defects on the sliding friction for 1D, 2D, and
3D elastic solids. For a one-dimensional solid with a low concentration of point defects we
present an exact solution, valid for arbitrary temperature and strength of the defect potential.
We also discuss the role of defects (e.g. steps) on the linear (in the external driving force)
sliding friction for Xe monolayers on metal surfaces.

This paper is organized as follows. In section 2 we present the model. In section 3 we
calculate the leading contribution to the sliding friction at high sliding velocities. In section
4 we study the sliding friction for small-amplitude vibrations. In section 5 we present an
exact solution for a 1D solid, which is valid for arbitrary temperature and strength of the
defect potential. The role of defects in the linear (in the driving force) sliding friction for
incommensurate Xe monolayers on metal surfaces is treated in section 6. Section 7 contains
a summary and conclusions.

2. The model

We develop the model for incommensurate monolayers of Xe on silver surfaces (see also
[8]). In addition to the adsorbate–substrate interaction potentialU = ∑

i u(ri ) and the
adsorbate–adsorbate interaction potentialV = 1

2

∑′
ij v(ri − rj ), an external forceF acts

on each of the adsorbates. This will lead to a drift motion such thatmη̄〈ṙ〉 = F where
〈· · ·〉 stands for thermal averaging. For a weak external forceF , the sliding frictionη̄ is
independent ofF .

The equation of motion for the particle coordinateri (t) is taken to be

mr̈i +mηṙi = −∂U
∂ri
− ∂V
∂ri
+ fi + F (2)

whereF is the external force introduced above andfi a stochastically fluctuating force
which describes the influence on particlei of the irregular thermal motion of the substrate.
The componentsf αi of fi are related to the frictionη via the fluctuation-dissipation theorem:

〈f αi (t)f βj (t ′)〉 = 2mkBT ηδαβδij δ(t − t ′). (3)

We have shown earlier [8] that for a compressed incommensurate Xe monolayer on
Ag(111) the substrate corrugation is unimportant, and we therefore takeU to correspond to
the interaction with surface defects only. Let us write

U =
∑
jn

Udf (rj −Rn) (4)

where theRn denote the position vectors of the defects. The strength of the defect potential
is denoted byUd and the ‘form factor’ byf (x). For later use we will needf (x) expanded
in plane waves:

f (x) =
∫

d2q f (q)eiq·x. (5)

For example, iff (x) = exp(−αx2), then

f (q) = 1

4πα
e−q

2/4α. (6)
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Using (4) and (5) we get

U = Ud
∑
jn

∫
d2q f (q)eiq·(rj−Rn). (7)

For Xe on silver, the microscopic frictionη is mainly of electronic origin; from surface
resistivity measurements and theoretical calculationsη ∼ 3× 108 s−1.

The adsorbate–adsorbate interaction potentialV is taken as a sum of Lennard-Jones pair
potentials:

v(r) = ε
[(

r0

r

)12

− 2

(
r0

r

)6
]

(8)

whereε is the well depth andr0 the particle separation at the minima in the pair potential.
For Xe in the gas phase,ε = 19 meV andr0 = 4.54 Å which we also use for adsorbed Xe.

Figure 1. (a) The transverse and the longitudinal sound velocity and (b) the lateral interaction
energy, as functions of the Xe coverage.

Let us now consider an adsorbate layer sliding with the velocityv on a substrate. Let
us write the coordinates for the particles in the sliding state as

ri = vt + xi + ui (9)

wherev is the drift velocity, thexi = (xi, yi) are the perfect-lattice sites (in a reference
frame moving with the velocityv) of the hexagonal structure, and theui are the (fluctuating)
displacements away from these sites. Substituting (9) in the equation of motion (2) and
expandingV to linear order inui gives

müi +mηu̇i +
∑
j

Kijuj = fi + F −mηv − ∂U

∂xi
(xi + vt + ui ) (10)
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where the force constant matrixKij has the componentsKαβ

ij = ∂2V/∂uαi ∂u
β

j . Let us
introduce the matrixK(q) with the components

Kαβ(q) =
∑
j

K
αβ

ij e−iq·(xi−xj )

or

Kαβ(q) = 6ε

r2
0

∑
n6=0

[
(ξ4
n − ξ7

n )δαβ + (14ξ8
n − 8ξ5

n )
xαn x

β
n

r2
0

]
(1− eiq·xn ) (11)

whereξn = r2
0/x

2
n and where the sum is over all of the sitesxn of the hexagonal lattice

of the adsorbate layer (excluding the site at the origin). In the limitq → 0 we can expand
(11) to quadratic order inq to get

Kαβ = mc2
T q

2δαβ +m(c2
L − c2

T )qαqβ. (12)

In figure 1(a) we show the transverse (cT ) and the longitudinal (cL) sound velocities as
functions of the Xe coverage. Figure 1(b) shows (forU = 0) the Xe–Xe interaction
potential, Vp =

∑′
j v0j /2, as a function of coverage. All of the quantities refer, of

course, to zero temperature. The two vertical dashed lines correspond to the coverage

of the uncompressed Xe monolayer film (na = 0.056 24 Å
−2

) and the compressed film

(0.0597Å
−2

) at the temperatureT = 77.4 K.
For steady sliding at small velocitiesv, only vibrations with large wavelengthλ ∼

(c/v)a, wherea is the lattice constant andc is the sound velocity, can be excited in the
adsorbed film. Ifλ � a (i.e. v � c), one can neglect the discrete nature of the film and
use the elastic continuum model. If the thickness of the filmh � λ, only vibrations with
the wave vector parallel to the surface can be excited. Because of this, forλ � a, h,
the adsorbate film can be considered as an elastic plate. In the plate it is possible to
excite bending vibrations, and also elastic waves with the wave vector parallel to the plate,
which are uniform over the thickness of the plate. However, due to the interaction with
the substrate, the bending vibrations have frequencies which are much higher than the
washboard frequencyv/a, and will not contribute to the sliding friction.

Let us derive the (long-wavelength) continuum limit of (10). In the continuum limit
ui (t)→ u(x, t), and using (12) the left-hand side of (10) takes the form

m

(
∂2u

∂t2
+ η∂u

∂t
− c2

T∇2u− (c2
L − c2

T )∇∇ · u
)
.

The fluctuating forcefi (t)→ f(x, t)/na wheref is the fluctuating force per unit area (na
is the number of adsorbates per unit area). The continuum limit of (3) is

〈fα(x, t)fβ(x′, t ′)〉 = 2ρkBT ηδαβδ(x− x′)δ(t − t ′) (13)

whereρ = mna. Finally, note that in the continuum limit the potential

U →
∑
jn

Udf (xj + vt + u(Rn, t)−Rn) = naUd(2π)2
∑
nG

f (G)eiG·[vt+u(Rn,t)−Rn] .

In the simplest case one includes only the contribution from the smallest reciprocal-lattice
vectors{G} in this expansion. Thus, for example, in the 1D case, which we consider in
detail below,

U = constant+ 2Udkf (k)
∑
n

cos(k[vt + u(Rn, t)− Rn]) (14)
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wherek = 2π/a, anda is the lattice constant. Multiplying (2) byna = 1/a gives in the
1D case the continuum equation

ρ

(
∂2u

∂t2
+ η∂u

∂t
− c2∂

2u

∂x2

)
= f (x, t)+ naF − ρηv

− λ
∑
n

sin(k[vt + u(Rn, t)− Rn])δ(x − Rn) (15)

where

λ = 2Udk
2f (k). (16)

3. High sliding velocities

Let us calculate the leading contribution to the sliding friction for high sliding velocities
and zero temperature. When the sliding velocityv is very high, the particles have no
time to adjust to the rapidly fluctuating forces from the pinning centres—hence the particle
trajectories will be nearly straight lines. Due to the particle–particle interactions the system
will therefore form a nearly perfect hexagonal structure as expected in the absence of pinning
centres. Now, asv decreases the particles will, in response to the forces from the pinning
centres, oscillate with increasing amplitude around the perfect-lattice sites. The treatment
presented below is only valid as long as the displacement of the atoms away from the lattice
sites is small compared to the lattice constant.

For largev, |ui | is small. Substituting (7) in (10) and expanding to linear order inui
gives

müi +mηu̇i +
∑
j

Kijuj = m(η̄ − η)v

− Ud
∫

d2q G(q)f (q)iqeiq·(xi+vt) + Ud
∫

d2q G(q)f (q)qq · uieiq·(xi+vt)

(17)

where

G =
∑
m

e−iq·Rm .

Let 〈· · ·〉 stand for time averaging and for averaging over the random distributions of
impurity centres. We have〈G〉 = 0 and

〈G(q)G(q′)〉 = Ndδq+q′,0→ (2π)2ndδ(q + q′) (18)

whereNd andnd are the total number of defects and the number of defects per unit area,
respectively. Since furthermore〈ui〉 = 0, we get from (17)

0= m(η̄ − η)v − Ud
∫

d2q f (q)qq · 〈G(q)ui〉eiq·(xi+vt). (19)

To linear order inUd we obtain from (17)

ui = − iUd
m

∫
d2q

G(q)f (q)eiq·(xi+vt)

(q · v)2+ iηq · v − ω2(q)
q (20a)

whereω2(q) is a matrix with the componentsKαβ/m, which, in the long-wavelength limit,
takes the form (see (12))

c2
T q

2δαβ + (c2
L − c2

T )qαqβ.
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Let es(q) denote the eigenvectors of the matrixω2(q), corresponding to the eigenvalues
ω2
s (q). Expandingq =∑s q · eses and substituting in(20a) gives

ui = − iUd
m

∑
s

∫
d2q

G(q)f (q)eiq·(xi+vt)

(q · v)2+ iηq · v − ω2
s (q)

q · eses . (20b)

Using (18) and (20b) gives

〈u2〉 = (2π)2U2
d nd

m2

∑
s

∫
d2q

(q · es)2|f (q)|2
[(q · v)2− ω2

s (q)]2+ (ηq · v)2 . (21)

Substituting (20b) in (19), using (18), and assumingv = x̂v gives after some simplifications

η̄ = η + (2π)
2U2

d nd

m2

∑
s

∫
d2q

ηq2
x (q · es)2|f (q)|2

[q2
xv

2− ω2
s (q)]2+ η2q2

xv
2
. (22)

Sinceη is ‘small’ we can take the limitη→ 0 when evaluating the integral in (22). Using

0

x2+ 02
→ πδ(x) as0→ 0

we get

η̄ = η + (2π)
2U2

d nd

m2v

∑
s

∫
d2q |qx |(q · es)2|f (q)|2πδ[q2

xv
2− ω2

s (q)].

Now, note thatωs(q +G) = ωs(q). We assumev � cL, cT , and the contributions to the
integral in (22) will then occur only forq ≈ G with Gx 6= 0. We get

η̄ = η + (2π
2)2U2

d nd

m2v

∑
sG

′|Gx |(G · es)2|f (G)|2/c2
s (23)

where the prime on the summation symbol indicates that in the sum overG, the reciprocal-
lattice vectors withGx = 0 are excluded. Similarly using (21) we get

〈u2〉 = (2π2)2U2
d nd

m2ηv

∑
sG

′ [
(G · es)2/|Gx |

] |f (G)|2/c2
s . (24)

In a similar way one obtains for a 1D solid

η̄ = η + 2π2U2
d nd

m2cv2

∑
G

′
G2|f (G)|2 (25)

and

〈u2〉 = 2π2U2
d nd

m2ηcv2

∑
G

′
(G2/G2

x)|f (G)|2 (26)

and for a 3D solid

η̄ = η + (2π)
5U2

d nd

2m2

∑
sG

′
G2
x(G · es)2|f (G)|2/c3

s (27)

and

〈u2〉 = (2π)5U2
d nd

2m2η

∑
sG

′
(G · es)2|f (G)|2/c3

s . (28)

The most important result obtained above is the velocity dependence ofη̄ − η and of 〈u2〉
which we summarize as follows:

1D: ∼1/v2 2D: ∼1/v 3D: ∼1.
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Now, the expansion ofU in ui , on which the derivation of (23)–(28) is based, is only
valid if 〈u2〉 � a2 wherea is the lattice constant. Hence it is clear that in the 3D case,
if Ud is small enough orη large enough, since〈u2〉 is independent ofv the results (27)
and (28) arevalid for all sliding velocities, and the friction forceF0 = mη̄v ∼ v for all v
(but v � c). (This statement is actually not quite true: in the calculation above we have
neglected the modifications in the adsorbate–substrate interaction due to the motion of the
substrate atoms. This is an excellent approximation at high sliding velocity but breaks down
at low sliding velocity. An analysis shows that at very low sliding velocity the friction force
is again proportional to the velocity but the proportionality factor is different to that in the
high-velocity region due to (adiabatic) renormalization of the adsorbate–substrate coupling;
see the next section.) However, for the 1D and 2D systems,〈u2〉 diverges asv → 0,
and it is clear thatindependently of how weak the defect potentialUd is, at low enough
velocitiesv the expansion on which (23)–(26) are based will break down. Physically, this
difference between 3D systems and 1D and 2D systems is related to the ‘softness’ of the
elastic properties of low-dimensional solids: in 1D and 2D solids a force applied at some
point in the solid gives rise to an infinitely large elastic displacement (for a finite system,
of linear sizeL, the elastic displacement scales asu ∼ L and∼lnL for 1D and 2D solids,
respectively). A similar conclusion has been reached by Sokoloff [9].

The condition given above for the validity of the high-velocity expansion, namely that
〈u2〉 � a2, is the correct one only if the defect concentrationnd is large enough. The point
is that〈u2〉 is theaverageover all of the atoms in the sliding lattice, while the condition for
the validity of the high-velocity expansion is that the displacementui of all of the atoms in
the lattice must be small compared to the lattice constanta. Since the displacementui of
an atom which is (temporarily) close to a defect is likely to be larger than for an atom far
away, it is clear that the condition〈u2〉 � a2 may not always guarantee the validity of the
high-v expansion. To illustrate this, let us first consider the 1D case. For a single defect
it is easy to show from the 1D version of (20b) that the maximum displacementui of an
atom when it is close to a defect is given by

umax = Ud π

2mcv

∑
G

f (G).

Thus 〈u2〉 ∼ u2
max givesnd ∼ η/4c, so fornd > η/4c the condition〈u2〉 � a2 guarantees

that the high-v expansion holds. Similarly, for a 2D system one can show that if the defect
concentrationnd > 4πηv/c2a, then the condition〈u2〉 � a2 will guarantee the validity
of the high-velocity expansion. For Xe on a silver surfaceη ∼ 3× 108 s−1, the sound
velocity c ∼ 500 s−1 and, with the typical sliding velocityv ∼ 1 cm s−1, the inequality

above reduces tona > 10−8 Å
−2

, which is usually satisfied in quartz crystal microbalance
friction measurements.

4. Small-amplitude vibrations

Another limiting case which can be solved exactly is that of the friction associated with
small-amplitude vibrations. We assume again a low concentration of randomly distributed
defects. In this case the defects will contribute independently of each other, and it is enough
to calculate the friction force associated with a single defect. This is most conveniently
done as follows. Letξ denote the coordinate of a defect (we consider first the 1D case so
thatξ is a scalar); see figure 2. Assume that the defect is connected to the 1D elastic solid at
the pointx = 0 via a spring with force constantK which is determined by expandingU(x)
to second order inx. We assume that the defect performs vibrations relative to the elastic
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Figure 2. A defect connected to a 1D elastic solid via a spring (spring constantK).

solid, and calculate the force acting on the defect from the solid. This force should be the
same as the force acting on a stationary defect if the elastic solid performs translational
vibrations (with the same amplitude and frequency) relative to the defects.

The force on the defect from the elastic media

F0(t) = −K[ξ − u(0, t)].
The defect particle exerts a forceK[ξ − u(0, t)] on the elastic media at the pointx = 0, so
the equation of motion of the elastic media becomes

ρ

(
∂2u

∂t2
+ η∂u

∂t
− c2∂

2u

∂x2

)
= K[ξ − u(0, t)]δ(x). (29)

This equation is easy to solve:

u(0, ω) = K[ξ(ω)− u(0, ω)] 1

2π

∫
dq

1

ρ(−ω2− iηω + c2q2)
= A[ξ(ω)− u(0, ω)]

(30)

where, in the limitη→ 0,

A = iK/2cρω.

It is easy to solve (30) foru(0, ω):

u(0, ω) = Aξ(ω)

1+ A
so the forceF0 acting on the defect

F0(ω) = −K[ξ(ω)− u(0, ω)] = −Kξ(ω)
1+ A → iωξ 2ρc (31)

asω→ 0. Thus

F(t) = −2ρcξ̇ . (32)

It is remarkable that the forceF which acts on the defect isindependentof the original
coupling strength (spring constantK) and that it is purely dissipative. That is, noelastic
restoring force occurs for a 1D solid. The physical origin of this is related to the fact that
an arbitrary weak force applied to a point of a 1D elastic solid gives rise to an infinite
displacement (for a finite 1D solid the displacement is proportional to the linear sizeL of
the solid). The physical origin of the friction force,−2ρcξ̇ , will be discussed in section 4.
If we haveNd defects, the total friction forceNd2ρcv = Nmη̄v, or

η̄ = η + 2ndc (33)
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where we have added the contributionη from the direct coupling to the substrate and where
we have used the fact thatNdρ/Nm = nd .

In a similar way to the above, it is easy to calculate the friction force for small-amplitude
vibrations for 2D and 3D solids, and here we only quote the results for low frequencies.
For a 3D system

A = K

2π2ρc2
T

∫ qc

0
dq

q2

q2− ω2/c2
T − i0+

(
1+ q2(c2

T /c
2
L − 1)/3

q2− ω2/c2
L − i0+

)
= B(ω)+ i

Kω

6πρc3
T

[
1+ 1

2

(
cT

cL

)3
]

(34)

where the real part ReA = B(ω)→ constant asω→ 0. Thus

F0(ω) = −K̄ξ − K̄2

6πρc3
T

[
1+ 1

2

(
cT

cL

)3
]
ξ̇ = 0 (35)

where the renormalized spring constantK̄ = K/[1 − B(0)]. We note that a very similar
expression for the friction force has been derived in reference [10] for adsorbates performing
parallel or perpendicular vibrations on surfaces of semi-infinite solids.

For a 2D system

A = K

2πρc2
T

∫ qc

0
dq

q

q2− ω2/c2
T − i0+

(
1+ q2(c2

T /c
2
L − 1)/2

q2− ω2/c2
L − i0+

)
= K

4πρc2
T

[
ln

(
qcc

2
T

ωcL

)
+ c

2
T

c2
L

ln

(
qccT

ω

)]
+ i

K

8ρc2
T

(
1+ c

2
T

c2
L

)
. (36)

Note that the real term in this expression diverges logarithmically whenω → 0. This
implies that the elastic restoring force vanishes asω → 0. The physical origin of this is
again the ‘softness’ of 2D elastic solids, where the displacement of a point P, in response
to a weak force applied at P, diverges logarithmically with the linear sizeL of the solid.
However, the logarithmic divergence in (36) is of no practical importance because any real
measurement involves finite frequenciesω (the external force has to be turned on and turned
off, and immediately this generates finite frequencies), and also because any real system
has a finite sizeL which implies that theq-integral in (36) must be cut-off atqmin ∼ 1/L,
rather than extended right down to zero, and this removes theω → 0 divergence of (36).
Thus, for a 2D solid the small-amplitude friction force has the form

F0(ω) = −Kξ/(1+ A) = −(K1+ iK2)ξ (37)

where both the real part (elastic spring constant)K1 and the imaginary partK2 are finite as
ω→ 0.

Figure 3. An elastic string sliding on a flat ‘substrate’ with a point imperfection.
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5. Exact solution for a 1D solid

In this section we present an exact solution to (15) for one defect (see figure 3), valid for
arbitrary temperature and defect strength [11]. The basic equation is

ρ

(
∂2u

∂t2
+ η∂u

∂t
− c2∂

2u

∂x2

)
= f (x, t)+ naF − ρηv − λ sin[k(vt + u)]δ(x) (38)

where

λ = 2Udk
2f (k). (39)

The fluctuating forcef (x, t) satisfies (13):

〈f (x, t)f (x ′, t ′)〉 = 2ρkBT ηδ(x − x ′)δ(t − t ′). (40)

Let us write

f (x, t) = 1

(2π)2

∫
dq dω f (q, ω)ei(qx−ωt). (41)

Substituting (41) in (40) gives

〈f (q, ω)f (q ′, ω′)〉 = 2ρkBT η(2π)
2δ(q + q ′)δ(ω + ω′). (42)

A single impurity in an infinite system cannot affect the sliding frictionper particle, so
F = mη̄v = mηv. Thus v = F/mη, and the termnaF − ρηv, which occurs in (38),
vanishes. The solution to (38) forx = 0 can be written as

u(0, t) = uT (0, t)+
∫ t

−∞
dt ′ G(t − t ′)λ sink[vt ′ + u(0, t ′)] (43)

where

G(t) = 1

2πρc

∫ 1

0
ds

e−ηts

(s − s2)1/2
(44)

and whereuT is the contribution tou from the fluctuating forcef (x, t):

uT (0, t) = 1

(2π)2

∫
dq dω

f (q, ω)e−iωt

ρ(c2q2− ω2− iωη)
. (45)

Let us take the time derivative of (43). We get, withu(0, t) = u(t),
du

dt
= duT

dt
+ λG(0) sink[vt + u(t)] − η

∫ t

−∞
dt ′ H(t − t ′)λ sink[vt ′ + u(t ′)] (46)

where

H(t) = 1

2πρc

∫ 1

0
ds

se−ηts

(s − s2)1/2
. (47)

It is easy to calculate

G(0) = 1/2ρc H(0) = 1/4ρc. (48)

Note that

〈u̇T (t)u̇T (0)〉 = 1

(2π)4

∫
dq dq ′ dω dω′ (−ωω′)e−iωt

× 2ρηkBT (2π)2δ(ω + ω′)δ(q + q ′)
ρ2(c2q2− ω2− iωη)(c2q ′2− ω′2− iω′η)

= kBT

ρc
δ(t). (49)

We assume thatη is ‘small’ and calculate the contribution from the defect to the friction
force to first order inη.
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Figure 4. The sliding friction dynamics when a 1D elastic solid slides over a defect is equivalent
to a particle moving in a periodic potential and being pulled by a harmonic spring.

Figure 5. In the limit η → 0 and forv < Udk
2f (k)/ρc the solid is pinned at the defect and

the ‘friction’ is due to the ‘stopping wave’ emitted from the defect, propagating to the right and
to the left with the sound velocityc.

To first order inη we can putη = 0 in the integralH(t). UsingH(0) = 1/4ρc this
gives

du

dt
= duT

dt
+ (λ/2ρc) sink[vt + u(t)] − η(λ/4ρc)

∫ t

−∞
dt ′ sink[vt ′ + u(t ′)]. (50)

Now, note that to zero order inη equation (43) gives

(λ/2ρc)
∫ t

−∞
dt ′ sink[vt ′ + u(t ′)] = u− uT . (51)

Substituting this in (50) gives to first order inη

du

dt
= duT

dt
+ (λ/2ρc) sink[vt + u(t)] − (η/2)(u− uT ). (52)

We introduceX = k(vt + u), F ∗ = kv, f ∗ = ku̇T , andU ∗d = kλ/2ρc, so

dX

dt
= F ∗ + f ∗ + kηuT + (η/2)(kvt −X)+ U ∗d sinX (53)

where

〈f ∗(t)f ∗(0)〉 = 2T ∗δ(t)

T ∗ = kBT

ρc
k2.

In (53) kηuT gives a small contribution to the fluctuating forcef ∗ which has no important
physical effects and we neglect this term. If we interpretη/2 = k∗ as a spring constant,
then (53) takes the form

dX

dt
= f ∗ + k∗(v∗t +X0−X)+ U ∗d sinX (54)
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where

X0 = F ∗/k∗ k∗ = η/2 v∗ = kv. (55)

Equation (54) describes a particle connected to a spring (spring constantk∗) where the
free end of the spring moves with the velocityv∗. The particle moves in the potential
U ∗ = U ∗d cosX and under the influence of the fluctuating forcef ∗; see figure 4. Since
the force from the spring in (54) increases linearly with time, after a long enough time the
spring force will be large enough to overcome the pinning barrier. Note that the contribution
k∗(v∗t +X0) to the spring force in the original quantities takes the form

(F/2)(2ct/a)+ 2ρcv. (56)

To understand this expression, consider an elastic string which slides (velocityv) on a
surface (along thex-axis) with one defect atx = 0. Assume that at timet = 0, the string
atoms at the defects get pinned. This will generate astopping wavewhich propagates to
the right and to the left with the sound velocityc; see figure 5. To zero order inη the
displacement fieldu(x, t) is easy to calculate. For example, forx > 0,

u0 = vt for x > ct

u0 = vx/c for x < ct

or

u0 = vt + (v/c)(x − ct)θ(ct − x). (57)

Thus the force on the defect, from the stopping wave occurring to the right of the defect,
is ρc2 ∂u/∂x(0, t) = ρcv. Similarly the force from the stopping wave from the region
to the left of the defect equalsρcv. Thus the total force equals 2ρcv which gives the
zero-order (inη) term in (56). Note that if the force from the stopping waves is bigger
than the forceλ = 2Udk2f (k) necessary to overcome the defect barrier, no pinning or local
stick–slip will occur. Thus to zero order inη, steady sliding occurs if 2ρcv > 2Udk2f (k)

or v > Udk
2f (k)/ρc. For a detailed discussion of theη = 0 limit, see appendix A.

The first term in (56) is of first order inη and has the following physical origin. On the
moving atoms forx > ct (andx < −ct), the driving forceF and the friction forcemηv act,
and since the atoms do not accelerate these forces are equal. Now, on the ‘stopped’ atoms,
for −ct < x < ct , the latter force vanishes, but the external forceF still acts, and must
in equilibrium be balanced by the spring forces between the particles. Since the number
of ‘stopped’ atoms at timet equals 2ct/a, the total force (derived from the external force
F ) acting on the defect equals(F/2)(2ct/a). The origin of the factor ofF/2—rather than
F—lies in the fact that when the stopping wave arrives atx = ct , it takes a timet = x/c
for that ‘message’ to propagate back to the defect. Thus, effectively, only the external force
acting on half of the atoms contained in the ‘stopped’ region will contribute to the force
acting on the defect.

Let us discuss the origin of the first term in (56) in detail. We calculate the displacement
field u to first order inη. The zero-order solution (inη) u is given by (57). Now, let us
write u = u0+ u1 and require that, to linear order inη, u satisfies the equation of motion

ρ

(
∂2u

∂t2
+ η∂u

∂t
− c2∂

2u

∂x2

)
= naF (58)

and the boundary conditionsu(0, t) = 0 andu(ct, t) = vt . This gives

u1 = (ηv/2c2)x(ct − x)θ(ct − x). (59)
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The force which acts on the defect from the elastic solid to the right of it is given by

ρc2 ∂u/∂x(0, t) = ρcv + (F/2)(ct/a) (60)

whereF = mηv. The force from the elastic solid to the left of the defect is also given by
(60). Thus the total force is the same as obtained above (see (56)).

Let us discuss the nature of the solutions of (54). For high sliding velocity we can write

X = v∗t + ξ (61)

whereξ is small. Substituting this in (54) gives to leading order in 1/v∗

ξ = −(U ∗d /v∗) cosv∗t. (62)

The force on the defect is

F0 = −λ〈sinX〉 = −λ〈sin(v∗t + ξ)〉 ≈ −λ〈sinv∗t + ξ cosv∗t〉. (63)

Substituting (62) in (63) and performing the time average gives the kinetic friction force

F0 = λU ∗d /2v∗. (64)

Substituting (39) in this expression gives the same high-velocity result as was derived earlier
(see (25) withG = ±2π/a included in the sum). It is clear that for very largev the velocity
of the solid at the defect has only a small modulation∼ cos(kvt) around the steady drift
velocity v occurring far away from the defect. Associated with these periodic oscillations
will be a damping caused by emission of sound waves. We note that the derivation of (64)
requires|ξ | � 1 or, using (62),U ∗d /v

∗ � 1, which is identical to the condition for the
high-velocity expansion for a single-impurity case derived at the end of section 4.

Figure 6. At low driving force F the solid at the defect will perform stick–slip motion. This
results in a series of wave pulses being emitted from the defect, propagating both to the right
and to the left of the defect with the sound velocityc. Because of the finite frictionη, the wave
pulses are damped (the damping and the width of the wave pulses are exaggerated).

Let us now consider very low sliding velocities. Assume first zero temperature. We
must consider two different cases. If the springk∗ is weak or the amplitudeU ∗d of the
defect potential high, an elastic instability occurs and the motion of the particle will always
be rapid during some time periods of the sliding, independently of how low the driving
velocity v∗ is. On the other hand if the spring is stiff orU ∗d small, no elastic instability will
occur and the velocitẏX of the particle will always be of orderv∗. For a cosine potential,
U ∗ = U ∗d cosX, the elastic instability will occur ifU∗d > k∗ or

kλ > ρcη. (65)

In most cases of interest this inequality is satisfied. In such cases the elastic solid at the
defect will perform stick–slip motion, where (for smallv∗) ‘long’ stick-time periods are
interrupted by rapid slipping. During sticking the spring force increases continuously with
increasing time, whileX is nearly constant, until the critical force necessary to overcome
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the pinning barrier is reached, at which point rapid slipping starts. This will result in a
series of wave pulses being emitted from the defects. In each pulse the solid moves with
a high velocity, but because of the dampingη the ‘height’ of the pulses decreases, so far
away from the defect the displacement field asymptotically approachesu = vt ; see figure
6. Since the motion is overdamped the ‘particle’ relaxes down in the next potential well
in the periodic potentialU ∗d cosX, i.e. theelastic solid in each stick–slip cycle is displaced
by a single lattice constant. The physical origin of the overdamped motion is the emission
of sound waves during the rapid local slipping. If we define the kinetic friction force as
the force on the defect averaged over time, it is enough to include the stick-time period in
the average, as the slipping occurs very quickly on the time-scale of a complete stick–slip
period. During a sticking period the spring force increases (approximately) linearly with
time. If the sliding velocity isv, the time of a stick–slip period isa/v. The spring force
at the onset of slipping is approximatelyλ. During slipping,v∗t is nearly constant, while
X increases by 2π , corresponding to a displacement by one lattice constant. Thus, during
slipping, the spring force decreases toλ(1− 2πk∗/U ∗d ) = λ − mcη. The kinetic friction
force therefore equals

F0 ∼ λ(1− πk∗/U ∗d ) = λ−mcη/2 (66)

which, for smallη, nearly equalsλ, i.e. the kinetic friction is nearly equal to the static
friction, and is independent of the sliding velocity. The latter is a consequence of the fact
that independently of how small the driving velocityv is, rapid processes always occur
during sliding.

Let us analyse the condition found above for an elastic instability to occur:kλ > ρcη.
When an elastic instability occurs the lattice at the defect performs local stick–slip motion.
During ‘stopping’ an elastic stopping wave is emitted from the defect. The lattice atoms in
the ‘stopped’ area exert a force on the defect which increases proportionally to the stopping
time t (see the second term in (60)), which can be written as (usingF = mηv)

Ftot (t) = ρηcvt.
The force necessary for the lattice to go over the barrier at the defect equalsλ. Thus the
stopping timet0 is determined byFtot (t0) = λ or ρηcvt0 = λ. Comparing this equation
with (65) giveskvt0 > 1 as the condition for local stick–slip instability to occur. That is, no
local stick–slip motion occurs if the force on the defect from the lattice reaches the pinning
force λ during a time period which is shorter than the time that it takes for the lattice to
move a distance 1/k = a/2π . This condition is physically very appealing and should also
be valid for 2D and 3D systems [12].

The picture above is modified at non-zero temperature. ForT > 0 K, if v is low
enough, the ‘particle’ will go over the barrier because of thermal excitation. If the velocity
is very small the only role of the external spring force is to slightly ‘tilt’ the potential energy
surface, leading to the ‘particle’ jumping slightly more often in the direction of the driving
force than in the opposite direction. This results in ‘creep motion’, where the friction force
depends linearly on the sliding velocity asv→ 0.

We close this section by presenting some numerical results which illustrate the analytical
results given above. It is convenient to introduce a new time variablet̄ = k∗t and define
Ūd = U ∗d /k∗, v̄ = v∗/k∗, and f̄ = f ∗/k∗. In these variables, equation (54) takes the form

dX

dt̄
= f̄ + (v̄t̄ +X0−X)+ Ūd sinX

where

〈f̄ (t̄)f̄ (0)〉 = 2T̄ δ(t̄)
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Figure 7. The dependence of the friction force,F̄0 = −〈Ūd sinX〉, on the sliding velocityv
for different barrier heights. The dashed line indicates the high-velocity expansion (64) (which
takes the form∼Ū2

d /2v̄ in the present units) for the case whereŪd = 3.5.

Figure 8. The friction force at low sliding velocity (̄F0(0) = lim v̄→0 F̄ (v̄)), as a function of the
barrier height. The solid line is the exact result while the dashed line is the high-Ūd expansion
(equation (62)), which in the present units takes the formF̄0 = Ūd − π .

whereT̄ = T ∗/k∗. In the original variablesŪd = 2Udk3f (k)/ρcη and T̄ = 2kBT k2/ρcη.
Figure 7 shows the dependence of the friction forceF̄0 on the sliding velocityv̄ for
different barrier heights. For̄Ud > 1 (i.e., U ∗d > k∗) an elastic instability occurs, and
the friction forceF0(0) is greater than zero, while it vanishes forŪd < 1. The dashed line
indicates the high-velocity expansion (64) (which takes the form∼Ū2/2v̄ in the present
units) for the case wherēUd = 3.5. Figure 8 shows the friction force at low sliding velocity
(F̄0(0) = limv→0 F̄0(v̄)) as a function of the barrier height. The solid line is the exact result
while the dashed line is the high-Ū expansion (66), which in the present units takes the
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Figure 9. The temperature dependence of the relation between the friction forceF̄0 and the
sliding velocity v̄ for (a) Ūd = 3 and (b)Ūd = 1.

form F̄0 = Ūd−π . Finally, figure 9 shows the relation betweenF̄0 andv̄ for three different
temperatures and for (a)̄Ud = 3 and (b)Ūd = 1. In the former case,̄F(0) is non-zero when
T̄ = 0, while it increases linearly with̄v (for small v̄), for T̄ > 0. The results presented
above may also be relevant for friction force microscopy; see reference [13].

6. Quartz crystal microbalance studies of the sliding friction

Sliding friction has been studied using the quartz crystal microbalance (QCM). In the
measurements by Krimet al [5] two sides of a quartz crystal were covered by thin silver
or gold films. When a voltage is applied to the crystal, it performs in-plane oscillations.
If adsorbates are adsorbed on the metal film, the resulting mass load will decrease the
resonance frequency of the oscillator. But Krimet al also observed an increased damping
of the oscillator which can only result if, due to the inertia force, the adsorbates slide relative
to the metal surface. In a typical experiment the oscillator frequencyω ∼ 108 s−1, and the
amplitudes of the adsorbate vibrations relative to the substrate are∼10–50Å. The basic
quantities deduced from the experimental data are the adsorbed massmN (whereN is the



Sliding friction: the contribution from defects 2885

number of adsorbed molecules), and the sliding frictionη̄ defined by (1).
Recent experimental and theoretical studies have shown that for a compressed

incommensurate Xe monolayer on Ag(111) the sliding frictionη̄ may be dominated by
the direct coupling between the sliding layer and the electronic excitations in the substrate
[6, 7]. The main support for this claim comes from a comparison of the observed sliding
friction with the electronic friction deduced from surface resistivity data. Assuming that
this conclusion is correct, it remains to be understood why the corrugated substrate potential
and the interaction with surface defects have a negligible influence on the sliding friction.
The first question was addressed in reference [8], and below we consider the influence of
surface defects on the sliding friction.

The force of inertia which acts on the adsorbate slab in a QCM measurement (which
is the origin of why the slab will slide relative to the substrate) is extremely small, at least
for thin adsorbate layers. This implies that the velocity is proportional to the driving force
(linear response theory). To prove that a linear response is an excellent approximation, note
that the force of inertia acting on an adsorbate isFext ∼ mAω2

0, whereA is the vibration
amplitude andω0 the vibration frequency of the quartz crystal. UsingA ∼ 100 Å and
ω0 ∼ 108 s−1 gives Fext ∼ 10−8 eV Å−1 which is extremely small compared with the
force due to the corrugated substrate potential or the potential from surface defects, which
is of orderUd/a, wherea ∼ 3 Å is the length over which the pinning potential varies and

Ud ∼ 1–10 meV is the strength of the defect potential. ThusUd/a ∼ 10−3 eV Å
−1� Fext ,

and the linear response approximation is very accurate.
Assume first zero temperature. A 2D elastic solid on a periodically corrugated substrate

can be either pinned by the substrate potential, in which case a finite force (per particle)
is necessary in order to start sliding, or else, if the amplitude of the substrate potential is
small enough, no pinning occurs and the static friction force vanishes. On the other hand,
if a randomdistribution of defects occur on the surface, the 2D solid willalwaysbe pinned
by the defects. If the concentration of defects is very low one can neglect the interaction
between the defects, and the total pinning force is the sum of the pinning forces from
the (independent) pinning centres. However, the surfaces used in the QCM measurements
have a relatively high concentration of defects. In these cases, if the interaction between
the defects and the elastic solid is weak, pinning will occur via the formation of domains
of linear sizeξ ; each domain can be considered as an ‘effective’ particle which is pinned
individually. The effective particles experience a potential from the defects which is periodic
and in the simplest case takes the formU1 coskx as a function of the coordinatex of the
effective particle. The strengthU1 of the pinning potential and the linear sizeξ of the
domains is determined by the theory of Larkin and Ovchinnikov [14]. For a 2D solid of
linear sizeL one has

ξ ≈ mc2l

Ud [4π ln(L/ξ)]1/2

wherel = n−1/2
d is of the order of the average distance between two nearby defects. In the

present case, ifL ∼ 1 cm, l ∼ 100 Å, andUd ∼ 10 meV, and usingmc2 = 0.3 eV as
calculated for the compressed Xe monolayer on silver (see section 2), we getξ ≈ 300Å. A
300 Å× 300 Å area contains approximatelyN = 104 Xe atoms on which the total external
forceNFext ∼ 10−5 eV Å−1 acts. This is much smaller than the pinning force which acts
on a domain, which is of orderkU1, where the pinning barrier

U1 ≈ ξUd/l = mc2/[4π ln(L/ξ)]1/2.

Using mc2 = 0.3 eV givesU1 ≈ 25 meV andkU1 ∼ 10 meV Å
−1 � NFext . Thus
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no sliding motion is possible at zero temperature. However, for non-zero temperatures
thermally activated motion (creep) will occur. Thermal excitation over the barrierU1

depends on the ratioU1/kBT ; for U1/kBT � 1 sliding occurs as if there were no barrier
at all, in which casēη ≈ η. But at low temperaturēη ∼ exp(2U1/kBT ), and it is clear
that by studying the temperature dependence of the sliding friction it is possible to deduce
information about the pinning barrier. We urge our experimentalist colleagues to perform
such temperature-dependent measurements.

It is interesting to note that the effective barrierU1 depends logarithmically on the
strengthUd of the defect potential, and is is thus very insensitive to the actual magnitude
of Ud . For example, ifUd increases from 10 meV to 20 meV,U1 increases by only∼5%.
This may be why the sliding friction for incommensurate solid Xe layers has been observed
to be quite insensitive to the degree of surface perfection [15]. It is also interesting to note
that the sliding frictionη̄ is independent of the sliding velocity [16]v, i.e., the friction
force F0 increases linearly withv. This is also consistent with the model of thermally
activated (creep) motion described above. On the other hand, if the high-velocity expansion
described in section 3 were to be valid, the defects would give a contribution to the friction
force proportional to∼1/v. This could still be consistent with the experiments, but only if
the contribution toη̄ from the defects is negligible compared with the direct contribution
η (which is velocity independent). To study this problem, let us assume that the sliding

velocity v ∼ 1 cm s−1, andnd ∼ 10−4 Å
−2

. In this case, if we include only the smallest
reciprocal-lattice vectorsG ∼ 2π/a and assume that the decay constantα ∼ 1/a2, then
from (23) and (24)

〈u2〉/a2 ∼ 1× 106 e−2π2 ∼ 1× 10−3

and

η̄ − η ∼ 1× 1011 e−2π2
s−1 ∼ 1× 102 s−1.

This calculation indicates that the high-velocity expansion may, in fact, be valid, and that
the contribution from the point defects to the friction force may be negligible. The results
given above depend, however, very sensitively on the ‘form factor’f (G), and, e.g., a small
change in the decay parameterα (see (6)) may change〈u2〉 and η̄− η by several orders of
magnitude.

The discussion above has only considered point defects, e.g., vacancies or adatoms. But
for metallic surfaces the dominant imperfections may be steps. The influence of steps on
the sliding friction is a complicated problem, since the steps are usually not straight and
the distribution of steps not uniform. If the steps were to be straight and parallel to each
other, and if the sliding direction were to be perpendicular to the steps, then the sliding
dynamics at zero temperature would be equivalent to a 1D elastic solid interacting with
a point defect. However, for non-zero temperatures this is no longer the case, and the
2D elastic properties of the system must be taken into account. Another limitation of the
study above is the assumption of purely elastic deformations. For QCM friction studies of
incommensurate Xe layers on Ag(111) this is an excellent approximation, since the driving
force (per particle) is extremely weak (linear response), and the 2D elastic solid stiff, so
no local shear melting or plastic deformation of the sliding lattice will occur in the vicinity
of the surface defects (shear melting induced by defects has been observed in computer
simulations for large driving forces (non-linear response); see reference [17]). Similarly,
the force on a defect from the sliding lattice is so weak that no displacement of the defect
will occur (at least not at zero temperature; forT > 0 K the defects may diffuse and
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drift slowly in the direction of the sliding 2D solid, but even this effect is likely to be
unimportant).

7. Summary and conclusions

We have studied the influence of defects on sliding friction. The leading contribution to
the sliding friction at high sliding velocities and for small-amplitude vibrations has been
derived for 1D, 2D, and 3D elastic solids. For a 1D solid with a low concentration of point
defects we have presented an exact solution, valid for arbitrary temperature and strength
of the defect potential. We have also discussed the role of defects in the linear (in the
external driving force) sliding friction for Xe monolayers on metal surfaces. For this
case we estimate the effective pinning barrier to be of the order of 25 meV. Thus one
would expect a strong dependence of the sliding friction on temperature, and we urge
our experimentalist colleagues to perform temperature-dependent measurements to test the
theoretical predictions.
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Appendix A

In this appendix we discuss the sliding dynamics whenη = 0. In this case, equation (53)
takes the form

dX

dt
= f ∗ + F ∗ + U ∗d sinX. (A1)

Thus we can interpret (A1) as the equation of motion of a particle in a periodic potential
U ∗(X) = U ∗d cosX under the influence of an external driving forceF ∗ and a fluctuating
forcef ∗. The motion is overdamped, since no d2X/dt2 term occurs in (A1). This problem
has been solved exactly by Risken and Vollmer [18]. The drift velocity〈dX/dt〉 = µF ∗,
where the mobilityµ in general depends on the driving forceF ∗, except for very small
F ∗ (the linear response regime) whereµ is independent ofF ∗. According to Risken and
Vollmer

µ = 2π(1− e−2πF ∗/T ∗)T ∗
[∫ 2π

0
dx eU

∗(x)/T ∗
∫ 2π

0
dx e−U

∗(x)/T ∗

− (1− e−2πF ∗/T ∗)

∫ 2π

0
dx e−U

∗(x)/T ∗
∫ x

0
dx ′ eU

∗(x ′)/T ∗
]−1

. (A2)

Note thatµ 6 1. From (38) it is clear that the defect exerts a force on the elastic solid
given by

F0 = −λ〈sink(vt − u)〉 = −λ〈sinX〉. (A3)

Using (A1) we get

〈sinX〉 = [〈dX/dt〉 − F ∗]/U ∗d = (µ− 1)F ∗/U ∗d . (A4)

Thus

F0 = 2ρcv(1− µ). (A5)
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Consider now a low concentration of randomly distributed defects. If the distance between
the defects is larger thanc/η we can neglect the dynamical interaction between the defects.
If Nd defects occur over the lengthL, and thusnd = Nd/L, then the total friction force
equals

Nmη̄v = Nmηv +NdF0. (A6)

Using (A5) this gives

η̄ = η + 2ndc(1− µ). (A7)

Figure A1. The friction coefficient, 1− µ, as a function of the driving forceF ∗ for several
different temperaturesT ∗. Based on reference [18].

Let us consider two limiting cases. Consider first zero temperature, where (A2) reduces
to

µ = [1− (U ∗d /F ∗)2]1/2
for |F ∗| > U ∗d (A8)

and zero otherwise. SinceU ∗d /F
∗ = Udk2f (k)/ρcv we get

η̄ = η + 2ndc if v < Udk
2f (k)/ρc (A9)

and

η̄ = η + 2ndc(1− [1− (Udk2f (k)/ρcv)2]1/2) if v > Udk
2f (k)/ρc. (A10)

Note that the first limit is identical to the result obtained earlier for small-amplitude low-
frequency vibrations; see (33). In the high-velocity limit, equation (A10) gives to leading
order in 1/v

η̄ = η + ndc
(
Udk

2f (k)

ρcv

)2

. (A11)

This result is identical to (25) if in the sum overG in (25) we only include the two lowest
(non-vanishing) terms,G = ±k, as was done in the derivation of the effective potentialU

(see (14)).
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As a second important limit, let us consider a linear response whereF ∗ (i.e. v) is very
small. In this case (A2) reduces to

µ =
(

2π
/∫ 2π

0
dx e(U

∗
d /T

∗) cosx

)2

. (A12)

Thus

η̄ = η + ndc
[

1−
(

2π
/∫ 2π

0
dx e(U

∗
d /T

∗) cosx

)2
]
. (A13)

Let us assume thatU ∗d /T
∗ � 1. In this case (A13) reduces to

η̄ = η + ndc
(
Udkf (k)

kBT

)2

. (A14)

Figure 10 shows the friction factor 1−µ as a function ofF ∗/U ∗ for several temperatures.
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